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We apply a “cavity-type” method for the analysis of the learning ability of single- and multilayer
perceptrons. We show that the mean-field equations obtained in this way, which are identical to the
equations derived previously by the replica method, describe not only the properties of the optimal
network, but also a learning process which leads to this network. We discuss the applicability of our
ideas to the construction of learning algorithms. Our interpretation of the mean-field theory also
leads naturally to a new concept, “flexibility,” which is a measure of the ability of the network to

learn.

PACS number(s): 87.10.+¢, 05.50.4q, 64.60.Cn

I. INTRODUCTION

It is now five years since Elizabeth Gardner introduced
the statistical-mechanical approach to the learning prob-
lem of neural networks [1,2]. This method has been found
to be a powerful theoretical tool and opened a new field
of research. In this approach, the learning task is for-
mulated as an optimization problem in the space of net-
work connections: every configuration of weights {J} is
assigned with an energy E({J}), which measures its suc-
cess in achieving the learning task. The energy landscape
is analyzed by a statistical-mechanical approach.

As an example let us consider the simple perceptron,
which is a threshold-linear feed-forward network with Vv
input units S; = £1, N continuous connections J; (j =
1,...,N) and an output unit ¢ = +1. The input output
relation is given by

N
o =sgn Z J;8;

=1

The perceptron learning task is to find a set of connec-
tions J that map correctly a set of P input patterns {¢!'}
(i=1,..,N; p=1,..., P) to their desired outputs o*.

Gardner and Derrida [2] associate an energy with each
configuration of connections

P N
E{ID) =V , W=0ct> Jig/VN (1)
p=1 j=1

and
V(h) = 6(—h). (2)

where 6 is the Heaviside step function and A* is denoted
the stability of the pattern £€“. The energy of a con-
figuration of connections equals the number of patterns
that are mapped incorrectly by this network. The opti-
mal network is the one with the minimal energy, or the
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minimal number of errors.
In the statistical-mechanical approach one has to cal-
culate the partition function

Z=3 e PEWDs N2 -N|. (3)
{J} J

3 is the inverse temperature. The é function confines the
space of solutions to network configurations with a fixed
norm, J - J = N. The patterns are composed of random
independent unbiased elements {£/}. We do not know
how to calculate the partition function for a particular
set of patterns, but we can obtain results that describe
the properties of a network that is trained with a typical
set of random patterns. This is achieved by a quenched
average over the patterns, an average of the logarithm of
the partition function. The quenched average is achieved
by the replica trick

(InZ) = lim (4)

n—0

Angular brackets denote the average over the patterns.

As a result of this calculation one finds that the space
of solutions (networks) for the simple perceptron depends
on the fraction a between the number of patterns and the
number of input units, & = P/N. If « is less than some
critical value ., there are many solutions in J space,
each of zero energy. Above o, the ground state is unique
and the ground-state energy is positive. These results are
obtained under the assumption of “replica symmetry.”
Other quantities which are calculated by this method
are the distribution of fields [3], and the typical overlap
among different solutions below a. [1].

All these results are obtained as we solve the replica-
derived mean-field equations. The problem with the
replica approach is that although powerful, it obscures
the the “physical” meaning of the theory. Replica the-
ory has been successfully applied to the problem of spin
glasses [4]. However, the same lack of physical clarity
motivated Mezard, Parisi, and Virasoro [5] to develop

(zm) -1
—
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the alternative cavity approach. In this approach one
equilibrates thermally a spin glass of N spins, then adds
to the system a new spin and equilibrates the combined
system. The mean-field equations are derived from self-
consistency considerations on the newly added spin.

In this work we analyze the perceptron learning prob-
lem in the same spirit. The idea of the cavity method
in the framework of neural networks is to optimize E(J)
for a system of P patterns, then add a new pattern and
optimize again. This approach has been suggested first
by Mezard [6]. There are some differences between the
cavity approach of Mezard and the approach presented
here. First, the Mezard calculation assumes finite tem-
perature, and therefore many configurations in weight
space should be taken into account. In this calculation
we assume zero temperature and a unique ground state.
This assumption leads to a theory which is equivalent
to the replica theory above a.. Second, Mezard adds
a pattern and also a site. In the present calculation the
number of sites is preserved. Third, and most important,
in the present calculation the focus is on the stabilities
of the patterns and their evolution under the addition of
a new pattern, while Mezard focuses on the evolution of
weights. As we shall see, our point of view makes the the-
ory physically clear and explicitly equivalent to previous
replica calculations.

This paper is set up as follows. In Sec. IT we describe
first the results of the replica analysis of a simple percep-
tron with continuous weights which are norm restricted.
Thereafter, we derive the same equations by the cavity
approach, and present a physical interpretation to their
structure. In the second part of this section we analyze
perceptrons which are not norm constrained. This serves
as an introduction to Sec. III. In Sec. III we analyze mul-
tilayer perceptrons (MLP’s). We consider two types of
architectures: fully connected MLP’s where each “hid-
den” unit receives input from all input units, and MLP’s
with local receptive fields, where each hidden unit re-
ceives input from a distinct group of input units. We
explain the difference in the resulting mean-field theo-
ries. In Sec. IV we introduce a new concept, denoted
“flexibility,” which arises naturally from the mean-field
theory, and which serves as a quantitative measure of
the ability of a network to learn. In Sec. V we present
learning algorithms which are motivated by the cavity
interpretation of the mean-field theory.

II. SINGLE-LAYER FEED-FORWARD
NETWORKS

A. Model A: simple perceptrons with a norm
constraint

We present here a generalization of the approach of
Gardner and Derrida, described previously, where V' (h)
is a general cost function instead of the step function [7].
As in [2] we consider networks with a fixed norm: J-J =
N. The present group of models provides the simplest
example for the application of the cavity method. We
describe first the results of the replica method.
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1. Results of the replica calculation

Since we are interested in the ground-state properties
of the system we take the limit 8 — co. In this limit we
calculate the “free energy” G by the replica method,

. 1
G = ﬂler;o <—ﬂ—N1nZ>.

This calculation involves a marix of order parameters

1 N
Gab = 5 >_ = I3 7.
Jj=1

The solution is obtained under the ansatz of replica sym-
metry which assumes g, = ¢ for a # b. Below a, there
are many network configurations that minimize the en-
ergy, each of which performs the learning task perfectly. ¢
measures the typical overlap between two such solutions
and since the networks are normalized its value is less
than one. Above a, the meaning of the replica-symmetric
ansatz is that only one configuration of connections mini-
mizes the energy. This optimal network does not perform
the task perfectly and the energy is greater than the min-
imum of V (times P). Since the minimum is unique, as
B — oo we have ¢ — 1. In this region a new order pa-
rameter z = [(1 — q) appears naturally. In terms of this
parameter we may write G in the following form:

G= a/DtF(ho(m,t),m,t) - %, (5)
where
(h—1)?

F(h,.’l),t) = V(h) + —21:'—
ho(z,t) is the value of h which minimizes F for fixed x
and t.
The dependence of x on « is found by the mean-field
equation

G
a/Dt(hg(a:,t) _4)?=1. )

The limit £ — oo corresponds to minimal ground-state
energy and a that solves the equation in this is a.. The
distribution of stabilities at the ground state is given by

() = [ DGk~ ho(a, 1) (®)

and the ground-state energy per pattern is given by

E/P = /DtV(ho(:c,t)). 9)

Applying this machinery to the Gardner-Derrida step
cost function one finds a. = 2 in agreement with a pre-
viously known result [8].

The replica equations look extremely simple. However,
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it is not clear what is the “physical” meaning of the order
parameter x and the Gaussian variable ¢t. We derive now
the statistical theory of learning by application of the
“cavity” method above ..

2. The cavity calculation

Suppose we have to minimize the energy for a specific
set of patterns &* (p = 1,...,P) (that is, to train the
network with these patterns). We assume that P/N > a.
and, therefore, that only one network configuration, J*,
minimizes the energy. This assumption makes our cavity
calculation equivalent to the replica-symmetric solution.
The ground-state energy is given by

p
Eas,p=Ep(J*) =Y V(h}). (10)

pu=1

Since the patterns are unbiased, we may assume with-
out loss of generality, in the case of a simple perceptron,
that the outputs are +1 for all patterns, and therefore

hy =J*-*/VN.

The subscript GS stands for ground state. Let us add
a new pattern £° and look for the ground state of the
combined P + 1 system.

For an arbitrary change AJ the energy of the combined
system is

Epy1(J* + AJ)
= Bp(J* + AJ) +V [(J* + AJ) - € /VN]
(11)
Ep(J* 4+ AJ) = Zp: V(h; + AJ - €4/VN).
p=1

We assume that the new ground-state vector does not
differ much from J*. The reason is that the typical
change in the stability that is needed for the training
of ¢0 is of order one. A change of this order is achieved
by AJ = £°/4/N. As a result of this change, the stability
of another pattern £* (u # 0) is changed by an amount
€0 . ¢#/N. This change is of the order 1/v/N since the
patterns are uncorrelated. Therefore, for u # 0 we may
expand V (h% + AJ - £#/v/N) around h%.

Since J* minimizes Ep the first-order term vanishes
and we find

Ep(J* + AJ) = Egs(P) + AEp(AJ),

(12)
ABp =4 V'(RE)(AJ €4 /VN)? = > T ATA ;.

p=1 3,3
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Terms of higher order do not contribute in the thermo-
dynamic limit.

J* minimizes Ep in the space of normalized J’s and
any small change AJ that is orthogonal to J* (and there-
fore conserves the norm) should increase the energy of the
P patterns. Therefore, AEp is a positive-definite sym-
metric quadratic form in AJ in the (N — 1)-dimensional
subspace orthogonal to J*.

We can diagonalize T in this subspace and find its pos-
itive eigenvalues A; and its eigenvectors U;. In terms of
these we write

N-1
AEp(AJ) =Y Ai(AJT-U;)2 (13)
i=1
In terms of these we write
N
Epi1(J* + AJ) = Egsp + Y Ai(AT - U;)?
=1
+V [(J* +AJ)- 50/\/7\7] . (19)

Generally V(A) is a nonlinear function. It is convenient
to minimize Ep4; in two steps: First we minimize Ep,
with respect to AJ fixing the stability of the last pat-
tern h = (J* + AJ) - €°/+/N and at the second stage we
minimize with respect to h,

N
Eps1(AJ kA1, 0) = Eas.p + Y Ai(AJT - Us)?
i=1
[k — (T + AT - €9

FV(R) + A(J* - AT).  (15)

A1 defines h and A5 imposes the normalization constraint.
Minimizing freely with respect to AJ and eliminating
afterwards A2 and and A\; we find

Epaa(h) = Easp+ C=L vy, o)
where
B N-1 (Ui .go/my
2z = ; R V—
and
t=J*-¢9/VN.
Therefore,
Egs,p+1 — Egs,p = min gﬁ—;?-t)i + V(h). (17)

The expression on the right-hand side (RHS) is nothing
but the expression F' that appears in the replica theory.

We are now in a position to interpret the meaning of
variables that appear in the replica equations. t is the
stability of the newly added pattern £° with respect to
the old solution J*. In other words, this is the stability of
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€9 before training. Since J* and £° are uncorrelated, and
since the norm squared of J* is N, t is a Gaussian ran-
dom number with zero mean and unity average square, in
agreement with the replica theory. As in the replica the-
ory, we define ho, which is the value of h that minimizes
F. The meaning of hg is clear now: it is the stability of
&0 after training.

The value of hg is a result of a competition between
the two energy terms in F: V(h) is the energy associated
with £° and (h — t)2/2z is the minimal energy increase
of the P patterns if the stability of £° is changed from ¢
to h. z serves as a “stiffness” parameter: the smaller z
is the harder it is to change the network. We therefore
expect that as P increases x should decrease.

In the replica calculation z depends only on o while in
the cavity approach x depends on ¢° as well as on U; and
A;, which are functions of the P patterns. Averaging z
over ¢9 we find

1 & 1
= — —_—= A)—.
o) = 3 o = [ aantang (18)
The fluctuations in = with respect to £° are given by
2 1
2 2 _
((22)%) = (22)° = 7 Ez v (19)

These fluctuations disappear in the large-N limit and we
find that = depends only on the distribution of the eigen-
values A;. The replica-symmetry ansatz actually bares
two assumptions: the first is that the ground state is
unique and the second is that the spectrum of T is self-
averaging (or, at least, the trace of T~1). We cannot
prove that the distribution is sample independent; how-
ever, we shall present later an explicit example where this
is indeed the case.

For most models, the distribution of the eigenvalues
is unknown, and therefore cannot be used for the calcu-
lation of z. We shall present later on a self-consistency
approach for the calculation of z, but before turning to
this problem we show that if the value of z is known
we can calculate by the cavity method everything that is
calculable by the replica approach.

If the initial stability of £° is ¢ then minimizing F we
find ho(z,t). - The energy of the newly added pattern
is therefore V (ho(x,t)). The average energy of the last
pattern is the average of V' (ho(x,t)) over t. However, af-
ter training, £° should not be different from the previous
patterns, and therefore, the energy of the whole system
is P + 1 times the averaged energy of £9,

Bas.pei = (P +1) / DtV (ho(s, ). (20)

Since we know the function ho(z,t) we can also calculate
the distribution of stabilities of the last pattern

() = [ D6 = oz, 1). (21)

Using, again, the equivalence of all patterns, this is also
the distribution of stabilities of the whole P + 1 system.
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The cavity expressions for the energy and the distribution
of fields are identical to the results of the replica theory.

We are left with the determination of z(P). The evo-
lution of z with P is determined from a self-consistency
consideration.

Let us calculate the average increase of the ground-
state energy when a pattern is added to a system of P
patterns. On one hand, the energy increase results from
the change in =

AE = Egs,p+1 — Eas,p

= (p+1)/DtV(ho(a;,,,t))
_p / DtV (ho(zy-1, 1)), (22)

where z,, is the value of z after training P patterns. On
the other hand, from Eq. (17), the average energy in-
crease can be written

AE = / Dt F(ho(zp,t), 2). (23)

Equating these two expressions we obtain a self-
consistency equation for z,

2
/Dt {Q‘O(“”_Ji‘ﬁ_] :p/DtV(ho(:vp,t))
—P/DtV(hO(pr—-lat))
_ pip / DtV (ho(z, 1))
:a%/DtV(ho(%t))- (24)

This equation, which determines the evolution of z with
a is the key for our whole theory.

On the RHS we have dV'(ho)/dP = V'(ho) dho/dP.
The dependence of hg on P is only via its dependence on
z. Using the fact that hg minimizes F' we have also

_d_(ho—1)?

/ —
V(ho) = dho 2z

and the consistency equation is written
h t)—t
/mroﬂ) )]

Note that

dho _d_(ho —t)?
da dho 2z

dho d (h()——t)2
/ Dt dhe 2

(25)

1 d

2
2mda(h0 6*

So the consistency equation may be written

/Dt(ho(a:,t) —t)? = —a% /Dt(ho —t)2.  (26)
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Integrating this equation we find
a/Dt(ho(z, ty—-t)’=C, (27)

where C is an undetermined integration constant. This
reproduces the replica mean-field equation that deter-
mines = [Eq. (7)] up to a constant C' which should be
1.

To determine C we need a boundary condition. Such
a boundary condition can be the knowledge of a,.. Using
this information we can determine C since the value of
T at o is known (it is infinity). However, cavity theory
does not provide such information and C is left unde-
termined. There is, however, a simple argument that
“explains” why C = 1.

8. A heuristic calculation of the constant C

Suppose £° has initially a stability ¢ and a stability
ho(t) after training. Therefore,

L 0_
NAJ«& = ho(t) —t.
We assume that AJ is in the direction of £°,
1
AT = —=y%° , ¥ =ho(t) —t.

y° is denoted the “embedding strength” [9] of £°. Its
distribution is given by

p6) = [ Do - (ho— ). (28)
Since all patterns are equivalent we may write
1 &
J'=— ner, 29
\/7\7;:31/ 3 (29)

y* are distributed like y°. The equation that determines
the value of z is the normalization constraint
2

= N.

1712 = (30)

1 P
— Bep
\/N;yﬁ

If we neglect the correlations among the patterns and
keep only diagonal terms we find

1 P
¥ W =1
p=1

Replacing the sum with the distribution of embedding
strengths we get

(31)

o / Dt(ho —1)? =1, (32)

which is the desired result.
In deriving this result we neglected the correlations
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among the patterns twice: first when we assumed that
the change in J is in the direction of £° and second in
calculation of the norm. Performing an even number of
mistakes we succeeded to obtain the correct result.

B. Model B: Perceptrons without a normalization
constraint

In this group of models the norm of the solution is
not confined. This leads to the appearance of a new
order parameter, the norm of the solution. This is a
more complicated example of the application of the cavity
method, and we present it here for two reasons: first, it is
shown to be a generalization of model A, and second, it is
an introduction for the application of the cavity method
to the two-layer perceptron.

1. The replica calculation

The zero-temperature “free energy” of the system is
derived by the replica method. The result is

2
G= a/DtF(ho(x,Rt),a:, Rt) — %—, (33)
where
P2
F(h, 2, Rt) = V(h) + (h—giﬁ)—

and ho(z, Rt) minimizes F for given x and Rt. We have
now two order parameters x and R which depend on P. =
plays the same role as in model A, and RV N is the norm
of the ground-state solution J*. Differentiating G with
respect to z and R we obtain two mean-field equations:

o / Dt(ho(x, Rt) — Rt)? = R? (34)
and
a / Dt(~t)(ho — Rt) = R. (35)

If we know R and z we can calculate the ground-state
energy per pattern,

E/P = / DtV (ho(z, Rt)) (36)
and the distribution of stabilities
p(h) = / Dt6(h — ho(z, Rt)). (37)
2. The cavity approach for model B

We start applying the cavity method on the same lines
as in model A: J* is the vector that minimizes the energy
of P patterns. We assume that its norm is RV N. We add
a new pattern £ and develop the energy of the combined
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P + 1 system around J*,
Epi1(J*+ AJ) = Egs,p + AEp(AJ)
+v [(7* +A0) - /YN,
(38)

AEp =3 Ep: V(R (AT - €4 /VN)?
p=1

ij
Since there is no normalization constraint J* is a true

minimum of the energy. Diagonalizing T, which is a
positive-definite matrix, we have

N
AEp(AJ) = Ai(AJ - U2
i=1

As before we fix the stability of the last pattern to the
value h and minimize in two steps,

N
Eps1(AJ,hX) = Egs,p+ »_ Ai(AT -U;)?* + V(h)

i=1

+A [h — (J*+AJ) -g%/ﬁ] . (39)

Minimizing with respect to AJ and then with respect to
A we are left with

Egs,p+1 = Egs(P) +

+ V' (ho),

(hO(xv -tha): _ Rt)z (40)

where ho(z, Rt) denotes the minimum point of F' and

- (U /VN)?

2 = yy

i=1

The initial stability J* - €°/+/N is denoted Rt. Since the
norm of J* is RV/N the random number ¢ is a normalized
Gaussian variable.

Averaging z over £° we express z in terms of the spec-
trum of T'

(2z) = / dA p(4)

and it can be shown, as in model A, that this quantity
does not fluctuate with £° in the large-N limit.

As in model A we can rederive the replica expressions
for the ground-state energy and the distribution of sta-
bilities by application of the principle of equivalence of
all patterns.

The task that we are left with is the calculation of the
functions z(a) and R(c). We need two equations. The
first one is, again, the self-consistency condition of the
energy increase. In analogy with model A we find

/Dt [(ho(w,};t; - Rt)2} _ a%/DtV(ho(x,Rt)).

(42)

(41)
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z and R are both functions of a. hy depends on « via
its dependence on x and Rt. Using the fact that hg min-
imizes F' this equation is written

/Dt [(ho(x, Rt) — Rt)z]
2x

=-a / pelhio d (ho —RE? g,

da dhg 2z
Note that
dhy_d_(ho — Rt)
da dhg 2z

1 (d 2 dR 0O 2
B 2:n{da(ho_Rt) " da BR(ho—Rt) }

So we write

/ Dt(ho(z, Rt) — Rt)?

- —a/Dt {-&%(ho — R’ - %(—Zt)(ho _ Rt)}.

(44)

This is the first cavity equation.

The second cavity equation is new and expresses the
fact that J* is a true minimum of the energy. We do not
know J* explicitly, but we do know the distribution of
the stabilities of the patterns with respect to it

(k) = [ Dt5(h = ho(a, Rt)

and the average energy per pattern

E/P = / dh p(h)V (h) = / DtV (ho(z, Rt)).

If we rescale J* by a factor s each stability h* =
ot J*¢* will be multiplied by this factor and therefore
the average energy per pattern will be

E= /DtV(sho(m,Rt)).

The second cavity equation expresses the fact that at the
minimum point, under this scaling the energy should be
stationary,

% / DtV (sho(z, Rt))|se1 = 0 (45)
or
/Dt hoV’(ho) =0. (46)

We show now that the cavity equations are equivalent to
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the replica mean-field equations. Since V'/(ho) = —(ho —
Rt)/z The second cavity equation can be written

/ Dt ho(ho — RE) = 0. (47)
We plug this equation into the first cavity equation and
find

d ,  2dR \
ot / Di(ho ~ RE)® + o o / Dt(ho — Rt)

= / Dt(ho — Rt)? (48)
or
—ailn/Dt(h — Rt)? +a-d—ln(R2) =1. (49)
dex 0 dox -
Integrating this equation we find the first replica equation

o / Dt(ho(z, Rt) — Rt)* = CR?, (50)
where C is again an undetermined constant.

Using this equation and the second cavity equation we
get

o / Dt(=t)(ho — Rt) = CR, (51)
which is the second replica equation. This completes the
demonstration that the cavity and the replica equations
are equivalent.

Note that the models with constrained norm are de-
rived from the unconstrained norm models simply by set-
ting R = 1 and keeping only the first mean-field equation.

As in model A, we have succeeded in deriving the cav-
ity equations up to an integration constant. We can jus-
tify C = 1 for the first replica equation using the same
argument as in model A.

3. A simple example

We use the quadratic model (no normalization)

V(h) = (h - 1) (52)
to demonstrate our ideas.

For P < N there is always a set of connections for
which the energy is zero since the number of linear equa-
tions that we have to solve, h* = 1, is less than the num-
ber of variables J;. It is clear therefore that a. = 1. We
investigate the behavior of this model above saturation.

Suppose we have found a network configuration J*
which minimizes the energy of P patterns. We add a
new pattern. Any change AJ increases the energy of the
previous P patterns by

P
AEp =1Y V(R (AT -€*/VN)? =) TyALAT;.

p=1 %]
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Note that since the model is quadratic, this is the ezact
value of AEp.

In this model the matrix T is simply the correlation
matrix

1 P
o M
Ty = N;:l: gren.

The spectrum of this matrix is self-averaging and the
distribution of eigenvalues is known [10]. For o > 1 the
eigenvalues are confined to the region A_ < A < A, :
A = (1++/a)? and

p(A) = V(Ay — A)(A - A_)/(2n4).

Therefore we can calculate = explicitly by Eq. (41) and
avoid the use of the first cavity equation. The result is
1

2 = ——.
* a—1

(53)

(54)
The energy of the P + 1 system is given by

Egs,p+1 = Egs,p + mhin [(a - 1)(h - Rt)2 +(h— 1)2] .
(55)

From this we calculate the function ho(Rt) and find

ho(Rt) = (56)

1+ (a—1)Rt
—
The value of R(a) is found by the second cavity equation
[Eq. (47)]. The result is R? = 1/(a — 1). Knowing the
dependence of R and x on a we calculate the energy per
pattern as a function of «,

B/(P+1) = /Dt(ho(Rt) —1)2=a-1  (57)
All these results are in complete agreement with the
replica calculation.

III. MULTILAYER PERCEPTRONS

Cavity theory provides a new way of looking at mul-
tilayer perceptrons. The fully connected multilayer per-
ceptron (MLP) consists of N binary input units S;, a
layer of k£ “hidden units” ¢;, and an output unit 7.

A set of connections Jij, Jaj, ..., Jg; connects all input
units to every hidden unit. The sign of a hidden unit is
given by

o; = sgn(h;), (58)

where the fields on the hidden units h; are given by

hi =Y Ji;S;/VN.
J

Each set of connections to one of the hidden units is de-
noted a subnetwork and may be regarded as a simple per-
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ceptron. Between the hidden layer and the output there
are other weights and possibly more hidden layers. All
these connections should be modified in the learning pro-
cess. The learning task is, again, to associate correctly a
set of input patterns to their outputs.

In this work we assume that all the connections from
the first hidden layer to the output are fixed and are
effectively represented by a Boolean function B which
maps each configuration of the hidden layer to the output

n=DB(F) , & ={0i}i=1,. k- (59)

Only the first layer of connections is modified during the
learning process.

A. Replica theory for the fully connected MLP

The ability of a MLP with a fized Boolean function to
learn can be analyzed by statistical mechanics. Suppose
we have to train the network with P, patterns which
have a (+) output and P_ patterns with a (—) output.
As in the simple perceptron, we can associate an energy
function with each network configuration {J, ..., Jx}

E(Jy, oy Ji) = > Va(R4, ..., hY)
HEPy

+ ) Vo(hY, . B (60)
HEP_
]

G’=a+/D3T V+(h—1+‘,.
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where hf = Ej széf/\/ﬁ

Vi(h1,...;h) = 0 if B(g) = 1, where the ith ele-
ment of & is given o; = sgn(h;). If B(G) = —1 we
have Vi (h1,..., hx) = 1. V_ is given by V_(hy,...,ht) =
1 -V, (hy,..., hg).

This is a generalization of the Gardner-Derrida step
cost function. The energy of a network equals the number
of patterns that are mapped incorrectly. However, as in
the simple perceptron, the formalism that we describe
here holds for arbitrary Vi and not only to potentials
which are a generalization of the step function.

The partition function is given by

Z = Z e"‘ﬂE(‘]lv-ka) (61)
J1ye0Jk

without a constraint on the norm. Norm-constrained
models are derived from the present model in the same
way that model A is derived from model B.

Applying the replica trick, assuming replica symmetry,
we obtain the zero-temperature free energy G,

. 1
G—ﬁlirr;o<—ﬂ—N1nZ>.

The calculation of the free energy above o, is almost
identical with the calculation of Griniasty and Grossman
[12] and the result in the limit of zero temperature is

k
R+ Y My (R — ) (k) —75)

i=1
k k
‘+‘a——/DsT Vo(hT,nhg) + D Myg(hi =) (hy —75) | — > M;; Sy, (62)
i,j=1 i,j=1

where ayx = Py /N and

dry, ..., d7k 1 a1
D = —€eX '—'—TS T.
7= Gnkirvaes b2

S and M are symmetric matrices of dimension k. The
saddle-point values of S;; represent the overlaps between
the subnetworks that minimize the energy

1 N
Sij =+ > JimJim.
m=1

h* and 7 are vectors of k elements. Each of the ele-
ments of h* (h™) is a function of the vector 7. It is the
value of A which minimizes F\y (F_)

Fi(M, T, 7&) = V:*:(hl, ...,hk)

k
+ 3 My(h—1)i(h—T7);. (63)

i,j=1

—

Note the similarity to the corresponding expressions of
model B [Eq. (33)]. We leave the derivation of the mean-
field equations for the Appendix and turn to the cavity
calculation.

B. The cavity calculation for fully connected MLP’s

The cavity approach is a generalization of the cavity
for model B. Suppose we train the network with P =
P, +P_ patterns and find the optimal set of subnetworks:
Jf, ..., Jt. Let us add a new (+) pattern £°. The initial
fields are 7; = J}¢°/v/N. These variables are random
and correlated,

N
1
(Tﬂ'j)eo = ﬁ Z Jil']jl = S” (64)
=1

This result is in agreement with the distribution D,7 in
the replica approach which generates the same correla-
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tions among the 7 variables,

/DSTTiTj = S”
If each of the subnetworks is changed by AJ; we have

Epi1(AJy, ..., Adg) = Egs(P) + AEp(AJy, ..., Adk)
+Vi (R, .y hi), (66)

(65)

where
hi = (JF + AJ;)E/VN

and AEp is given by development of Ep around its min-
imum value to the second order

P k
1 -
ABp(AJ1, ..., AJk) = o DI 7 (RN )

p=14,j=1
x(AJ; - €#) (AT - €¥).
(67)

Vil = (8%V,,/0hidh;). B}, = Jf-£#/v/N and V,, is either
V4 or V_. This may also be written in a matrix form

AEp = Z Diry AJiAJj,
i,k,5,
(68)

1 y
Diggi = 53 S viegel.
N

We introduce k Lagrange multipliers \; to fix the value
of h; and write

Ep+1({AJi}, {Ai}, {hi})
= EGs’p + AEP({AJl}) + V+(h1, vy hg)

k
+3 Nilhi = (JF + AT)E/VN). (69)

i=1
First we minimize over AJ and find

1 _
Epi1({A\}, {hi}) = Egs,p — iv > Dl MENEp
ikl

k
+Vi(ha, ooy hie) + Z Ai(hy — 15).

i=1

(70)

The second term on the RHS does not fluctuate with
respect to £° in the thermodynamic limit and we replace
it by its average

< > D Mg Aj£?> =" DpliA;.

LN i,k,J

(71)

‘We define

1 _ _
N > Dy = M
k
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and write

Eps1({X}, {hi}) = Eas,p — § > M3 A
A)j

k
Vi (hey oy hi) + D Ni(hi — 7).

i=1
(72)
Eliminating the X\ variables we are left with
Epi1({h:i}) = Egs,p + Vi(h1, .., hi)
(73)

+ Y Mij(hi — 7i)(h; — 75)
0
and

Egs,p+1 — Egs,p = ming, [V+(h1, vy Bi)

3 Mig(h = )y = 7).
i,J
(74)

As in previous cavity calculations, we find on the RHS the
expression F; that appears in the corresponding replica
calculation.

In analogy with the simple perceptron, the first term
on the RHS is the energy associated with £€° and the
second term is the minimal increase in the energy of the
P patterns if the fields induced by £° on each of the
subneworks are changed from 7; to h; by a change of the
weights. It is clear that the matrix M is positive definite,
since the energy of the P patterns should increase any
change of the fields.

If £° had a (—) output we would arrive at F_ instead
F,. An important point is that the matrices M and S
have the same value whether £° is a (+) or a (—) pattern,
since they depend only on the original P patterns.

The minimum point of F is denoted At (7). These are
the fields of £0 after training. The internal representation
of €0 is given by

o; = sgn(h). (75)
We see that the initial fields of £€° determine the internal
representation that is associated with this pattern. This
is a very appealing property from the point of view of real
learning algorithms since the choice of the internal repre-
sentations is a key problem in the training of multilayer
perceptrons.

We leave the derivation of the mean-field equations,
that define the values M (a) and S(), to the Appendix
and present the expressions for the distribution of fields
and the ground-state energy assuming the knowledge of
M and S. Using the equivalence of all the (+) patterns
we find, in analogy with the simple perceptron,

k
pi(hiy .o, hi) = /DSTH(S [hi — BF(7)] . (76)
=1

A similar expression defines p_ . The fields h; are
correlated and their distribution is a joint distribution.
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The ground-state energy of the whole system is given by
FE = P+/D37' V+(h-1+_, cony h;:)
+P /DST Vo (kDo B). (77)

The mean-field theory of learning views the fully con-
nected multilayer perceptron as a system of coupled sim-
ple perceptrons. The outputs of these perceptrons are
coupled by the potentials V.. The coupling is also ex-
pressed in the fact that the matrices M and S are non-
diagonal. The nondiagonality of these matrices is con-
nected with the fact that each of these perceptrons re-
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ceives the same set of inputs. This point will be clarified
in Sec. ITII C, where we present the analysis of MLP’s with
nonoverlapping receptive fields.

C. Nonoverlapping receptive fields

An alternative architecture that has been analyzed re-
cently [13] is the MLP with nonoverlapping receptive
fields (NRF). In this architecture, each of the k hidden
units receives input from a different set of N input units.
The input layer consists therefore of kN units. The out-
put is, still, a fixed Boolean function of the hidden units.
The replica symmetric free energy is given in this case by

k
G= a+/Dsm <+« Dy, Tk [v+(hf, o hE) ) Mu(h - Ti)z}
=1

k k
+a_ /DalTl"-Dska [V_(hl_,...,h;) + ) Mis(hy ——7'1')2} = MySi, (78)

where D, 7; is a Gaussian weight of width square S;; and
a4y = Pi / N. _
For a fixed vector 7, h* minimizes Fy

k
Fe(M,7) = Vi(h, s hi) + Y My(h —7)2,  (79)

i=1

where the potentials V. are derived from the Boolean
function in the same way as in the fully connected case.

The free energy of the NRF architecture is identical
to the free energy of the corresponding fully connected
architecture, except that the order parameter matrices S
and M are diagonal.

This is clearly explained by the cavity approach. Sup-
pose we train the network with a set of P patterns
and find a set of subnetworks J},...,Jf. We intro-
duce a new pattern £° which has initial random fields
T = Jf - €9/v/N. Here £2 is the group of N inputs that
enters the ith hidden unit. Since £ are random and in-
dependent for different %, the initial fields 7; are random
independent Gaussian variables. This explains the diago-
nality of the matrix S. The diagonality of M results also
from the fact that each hidden unit receives a different
set of input patterns. If we repeat the steps starting with
Eq. (66), we find, in analogy with Eq. (70)

1 —
Epi1({Ai} {hi}) = Egs,p — N D Dhidéhne
i, k,3,1

k
+V+(h1, ceey hk) + Z Az(hl - Ti)a

=1
(80)

where

1 3
Dieji = 535 > _ Vil€hth
n

i=1 i=1

f
and §J‘.”l is the lth element of the group of inputs that
enter hidden unit j. Performing the average over £°

< Z Djijy i€ Ajﬁ?x> = ZD,-—k}k)\Mi
LA ik
=Y M, (81)
i

we find that only the diagonal terms of M are nonvan-
ishing.

We see that MLP’s may be regarded as a set of inter-
acting simple perceptrons. In both architectures (fully
connected and NRF) the outputs of these perceptrons
(the hidden units) are coupled by the Boolean function.
In the fully connected architecture the perceptrons are
coupled also in their inputs; this is expressed by the fact
that the matrices M and S are nondiagonal while in the
NRF network the inputs are decoupled.

D. Interpretation of the solution of the mean-field
equations for the XOR and AND machines
at the saturation limit

In order to demonstrate our ideas we describe here
the solution of the mean-field equations for the fully con-
nected XOR machine [14] and the AND machine [12] in the
limit of critical capacity, in view of the cavity approach.

The XOR machine has two hidden units and an output

which is their product. The corresponding cost functions
are

Vi (ha, he) = 6(Fhihz). (82)

The AND machine has a positive output only if both hid-
den units are positive. The corresponding potentials are
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Vi =1—0(hiha) , V. = 0(hihy). (83)

The solution is given in terms of the matrices M and
S, whose dimension is 2 in our case, and the functions
hE(F).

In both the XOR and AND machines the Boolean func-
tions are invariant under the permutation of its argu-
ments. This implies that a solution of the form M;; =
Mo and Mo = Moy, exists.

We describe first the mean-field solution of the XOR
machine. Approaching the saturation limit from above
a — aF the elements of M should vanish, since the ad-
dition of a new pattern should not increase the energy.
Given the initial fields {r;, 72} of a new (+) pattern, the
fields after training {h{; h5 } are determined by the min-
imum of

2
Fip =0(=hiha) + > Mij(h—7)i(h—7);.  (84)
i,j=1
Since M;; — 0 the minimum point lies in the region in h

space where V, (h = 0, which we denote R . For the XOR
machines R, consists of the first and third quadrants.

hp, T2
@
by Ty
T1+T2=0
hy, T T -T2=0
(b)
h,, T

FIG. 1. (a) The optimal training flow of a (+) pattern in
the XOR machine at saturation. (a4 = a-.) A pattern that
falls initially in the “wrong” region (R-) is carried in the
learning process to R4 (the first and third quadrants). The
learning flow is to the closer quadrant and only one subnet-
work is trained. If the pattern falls initially in Ry it stays
there (no flow, and no arrows). (b) The optimal training of a
(—) pattern in the XOR machine.
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The exact minimum point is determired by the residual
values M;;. The matrix M remains positive definite as
we approach ., and therefore the quadratic form that
appears in F is concave in k. As a result, if 7 € R_, the
minimum point lies on the boundary between R, and R_
and its value depends on the ratio Mi5/Mj; in the limit
a — a.. Solving the mean-field equations for the XOR
machine with an equal number of + and — patterns we
find My3/M7; — 0. The dependence of AT on T is shown
in Fig. 1(a). The arrows denote the mapping from 7 to
h*. In the R, region there are no arrows. The reason
is that if 7 € Ry the concavity of the quadratic form in
F implies that AT = 7. The training flow describes the
cooperation between the subnetworks J; and Jy in the
training of a + pattern. If the fields before training are
in R_ then only one subnetwork is trained to correct the
error. The chosen subnetwork is the one with the shorter
Euclidean distance to R..

The training map of a (—) pattern is similar and is
given in Fig. 1(b). Another result of the mean-field the-

h2, T2

/

)

(a)

0

T +032T=0

T +0.327T1=0

hp, T2 T1-T2=0

(b)

FIG. 2. (a) The optimal training flow of a (+) pattern in
the AND machine at saturation. (a4 = a-.) The suggested
learning strategy is nontrivial. A pattern that falls initially in
the fourth quadrant is carried to the first quadrant by training
the second subnetwork and untraining the first subnetwork.
This is in contrast to the naive strategy, which is to train
only the second subnetwork. (b) The optimal training flow
of a (—) pattern in the AND machine. As in the case of a
positive patter, the suggested learning strategy is nontrivial,
and the learning flow does not take the shortest Euclidean
path.
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ory is that Si2 = 0 which implies that the optimal sub-
networks Ji,J3 are orthogonal. The orthogonality is a
result of the the learning strategy in which each of the
subnetworks is trained with a different subset of the pat-
terns.

A different scenario takes place in the AND machine.
In this case R, is the first quadrant in h space. At the
saturation limit, the elements of M vanish. As in the
the XOR machine, the exact minimum point depends on
the ratio My2/Mi; in this limit. Solving the mean-field
equations (in the case of an equal number of + and —
patterns) one finds M13/My; — 0.32. The resulting map
of the training of a + pattern ¥ — h™ is given in Fig.
2(a). The optimal learning strategy that is offered by the
mean-field solution is nontrivial. If 7 falls in the fourth
quadrant (11 > 0 ; 72 < 0) then J2 learns the pat-
tern (h'z" > 7 ) while J; unlearns the pattern partially
(hi < 71). Mean-field theory suggests a different learn-
ing strategy than the naive strategy, which is to train
only the “wrong” subnetwork.

Another result of the mean-field theory is that the over-
lap Si2 vanishes in the optimal network. This may be
explained qualitatively by the learning maps for the (+)
and (—) patterns [Figs. 2(a) and 2(b)]. Looking at the
maps we see that learning (—) patterns that fall initially
in the first quadrant anti-correlates the subnetworks. So
does the training of + patterns that fall in the second
and fourth quadrants. However, the training of a + pat-
tern that falls initially in the third quadrant correlates
the subnetworks. This leads finally to the result of zero
overlap between the subnetworks.

IV. THE FLEXIBILITY OF NETWORKS

Let us consider again the simple perceptron with a
norm constraint. Including the constraint, the cost func-
tion for a specific set of patterns is given by

P
E(J,)) =Y V(h*)+ X(J - J = N),
p=1

(85)
W = om7g VN,

where X is a Lagrange multiplier. On the other hand,
according to mean-field theory, the pattern-averaged
ground-state energy is given by the minimum over A of
NG(A) where

NG(\) = P / Dtmin [V(h) + A(h —1)?] — N (86)

and we wrote A instead of 1/2zx.

The similarity between expressions (85) and (86) sug-
gests that in the mean-field theory patterns are repre-
sented by a Gaussian distribution of initial stabilities.
We reverse now the averaging process. Let us consider
a specific set of P patterns £#, and associate with each
pattern a variable t#, which is the stability of £* before
training, if it was the last pattern to be trained. The
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mean-field theory assumes that these variables are in-
dependent (for instance, in our cavity approach we infer
from the averaged ground-state energy of a unique pat-
tern to the ground state of the whole system). Therefore,
we replace distribution of stabilities Dt in Eq. (86) by the
variables t#, and write

P

P
NG(A) =) _V(h§) + A [Z(hg —t#)? — N] , (87)
p=1

=1

where h{ minimizes V/(h*) + A(h* — t#)2.
We may write now the energy before the minimization
over the h* variables

P P
NG({h#*},2) =Y _V(h*) + A (Z(h“ —tH)? — N) )
p=1

p=1
(88)

The minimization over the J variables in Eq. (85) is re-
placed by the minimization over the h* variables. Note
that the specific values t* are unknown. The normaliza-
tion constraint in Eq. (85) is replaced by the constraint

P
D> (W —t")? =N, (89)
p=1

which we denote the flexibility constraint of the network.
Mean-field theory tells us that energy is minimized under
a constraint on the sum of squares of the deviations of
the stabilities after training from the stabilities before
training.

We think that for networks with continuous weights,
flexibility is an appropriate measure of the network’s abil-
ity to learn. The question, “How much information can
be stored in a network with continuous weights?” is as
meaningless as the question, “How much information can
we store on a sheet of paper of a given size?” The answer
to the second question is that it depends on how small
the letters are that we can read. Similarly, the amount
of information that can be stored in a network depends
on our ability to interpret or to decode the output. The
“size of the letters” is analogous to the amount of flexi-
bility that is needed to teach the network a pattern. A
better “decoder” can detect information that has been
coded with a smaller amount of learning effort, or, in
other words, with a smaller expense of flexibility.

In order to demonstrate the power of the concept of
flexibility, we use it to calculate the maximal capac-
ity of the “parity decoder” multilayer perceptron with
a nonoverlapping receptive fields architecture (Barkai,
Hansel, and Kanter [13]). In this network the output
is the product of the hidden units. As explained previ-
ously, this network may be regarded as a set of k simple
perceptrons with coupled outputs. Suppose P patterns
have been learned, and we have found k sets of connec-
tions JY, ..., J§ each normalized to N.

We present now a new pattern £° which should be
mapped to +1. As explained previously, its initial fields,
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7 = JF¢°/v/N, are normalized independent Gaussian
random numbers. There is a probability one-half that £°
will be mapped correctly without training. However, if
the product [], 7; is negative, an odd number of subnet-
works should be trained so that [, ;" will be positive.

Each network, being a simple perceptron of norm
square N, has total flexibility N. To minimize the flexi-
bility expense in the training of £€2 we choose to train one
subnetwork, and this is the subnetwork with the small-
est |7|. At saturation each subnetwork J; exhausts its
flexibility and obeys the equation

P

(" — 42 = N. (90)
1

u=

Or, in the continuous version
+ 2 _
Q/DTl"'DT["'DTk(hl —n)“ =1,

where hj" = 0 (which means that it flipped its sign) if |¢;]
is the smallest, and hl+ = 77 otherwise. So the equation
for the lth subnetwork is written
a/ Dt Dty(t)? = 1, (91)
R

Where R is the region in the k-dimensional 7 space where
J

E{J;}) =Y V(h*) > NG{h*},\,R) = > _V(h*) + A (Z(h" — )2~ NR2>
I I "
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77 is the smallest. We have
oo
[ DDy = [ pretpa(rt
R —o00
o0
=2 / Dr r2[2H (7))L,
0

This must be multiplied by one-half since one-half of the
patterns is mapped correctly without training. Finally
we recover the replica-symmetric result for o

ozl (k) = /0 ~ Drr22H ()1 (92)

In this calculation we assumed that all the patterns
have + output, but the same result is obtained if some
are — patterns. This is in contrast to the fully connected
MLP where the capacity does depend on the ratio be-
tween the number of (+) and (—) patterns.

For k = 2 we obtain a, ~ 11, which is much more
than the number of patterns that can be stored in two
simple perceptrons (11 > 2 x 2). The reason is that the
parity decoder is efficient and the training of each pattern
consumes less flexibility.

Flexibility is meaningful also for unnormalized models.
Repeating the steps (86)—(88) for a perceptron without
a norm constraint we find

(93)

with initial stabilities 7# which have zero mean and variance R2,
1 2
— n2 _ p2
P Z "4 = R”.
w

This expresses the fact that the network can choose its norm, and therefore its flexibility, but on the other hand,
the distribution of initial stabilities depends on the norm. The competition between these two factors determines the

optimal norm of the network.

Analogously, for multilayer fully connected perceptrons we find the following correspondence:

E(Jy) = Y Va(R®) + Y VL(R*)

HEP, HEP_

o NG Mg, Sig) = 30 Ve + 30 Vo) + 30y (Z(hz‘—r;‘xh; ) —Nsi])
w

pEP, HEP_

with 7’s that obey
1
w

As in the previous case, there is a competition which
finally determines the values S;;.

V. ?CAVITY” MOTIVATED ALGORITHMS
A. A learning algorithm for the simple perceptron

In this section we discuss the possibility of the applica-
tion of the mean-field learning strategy for the construc-

(94)

ij

T
tion of learning algorithms. There are some problems in
the application of this idea:

(1) The theory describes the optimal learning process
around the solution where an algorithm starts far away
from the solution.

(2) The function ho(z,t) tells us the change in the
weight vector in the direction of the pattern: hg —t =
AJE%C but the full change is not known.

(3) The theory describes the learning of a new pattern,
how can we train a pattern that has been already trained?

We suggest an iterative algorithm which corrects the
connections vector in the direction of the learned pattern:
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after n steps the set of connections is given by
1
KM=N;WW£%W (95)
To correct for the pattern £€” we define

tY(n) = [J — %y”(n)é”a"] ¥
— ¥(n) — 4" (n). (96)

The subtraction of the contribution of £€” to J, y”, allows
one to treat this pattern as if it is a new one (this is not
completely true since the embedding strengths of other
patterns have been also affected by the presence of £, but
we did not find a better solution). The initial stability
of £&¥ is t¥(n). We use now the function hg(t”(n)) to
calculate the stability of £¥ after training. The function
depends on a parameter z(a) which is determined by the
mean-field equations. The new embedding strength is
given by

¥’ (n+1) = h¥(n) — t(n). (97)
Note that the algorithm does not constrain the norm of
the weight vector, and therefore corresponds to percep-

tron models of type B.
To demonstrate this algorithm, we choose

V(h) = (h—1)%26(h —1). (98)

Analysis of this model [11] shows that for @ < 2, z = 00
(which means no errors) and

1, t<1
h"(t)—{t, t>1
and the corresponding algorithm is
y“(n +1) = max (1 — [2*(n) — y*(n)],0) (99)

or equivalently
h¥(n+1) = max ([r*(n) — y*(n)], 1), (100)

which is exactly the “Adatron” algorithm [11], which is a
very efficient algorithm which finds the network with the
highest minimal stability. It is also shown in [11] that this
algorithm is guaranteed to converge. This demonstrates
that a mean field theory leads to an efficient algorithm.

B. Learning algorithms for MLP’s

We tried to construct a multilayer perceptron algo-
rithm which is based on the mean-field theory. We con-
sider a fully connected network with k£ hidden units. In
analogy with the previous algorithm we write

1
Jin) = 5 Dol (n)g*, (101)
"

where J; is the ith subnetwork after n iterations.
We calculate now the fields of £ “before training”

1

O O I (102)
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and use mean-field theory to calculate h*(7”) and the
new embedding strengths

y! (n+1) = BE (7 (n)) — 7/ (n). (103)

We applied this algorithm to the AND machine, and com-
pared is performance with the “minimal disturbance” al-
gorithm, which is the algorithm which chooses to make
the minimal correction needed.

It turns out that there is no essential difference in the
maximal capacity achieved by these algorithms. For N =
200 we obtain a. ~ 3.0, which is a bit less than the
capacity achieved by the stochastic algorithm described
in [12], a. ~ 3.3. Although the mean-field algorithm does
not show a clear advantage in this example, there is still
room for further investigation.

VI. A SHORT SUMMARY AND DISCUSSION

In this work we suggest a unifying view of the mean-
field theories of learning of simple and multilayer per-
ceptrons. According to this view, which is obtained by
the cavity approach, mean-field theory describes a learn-
ing process. This learning process is represented by a
functional relation between the stability (or fields, in the
case of MLP’s) of a pattern before and after learning.
The function is controlled by order parameters which are
determined self-consistently by the mean-field equations.
Since the order parameters are chosen optimally, the re-
sulting “learning flow” is optimal with respect to the pre-
scribed cost function.

Motivated by this interpretation, we try to construct
new learning algorithms. In the case of a simple per-
ceptron, we arrive at the already known and very effi-
cient Adatron algorithm. We also suggest algorithms for
MLP’s. In particular, we investigate the training of a
fully connected AND machine, which has a nontrivial op-
timal learning flow according to mean-field theory. Com-
parison with a “naive” algorithm shows no clear advan-
tage to our new algorithm. However, since the correspon-
dence between the mean-field theory and the algorithm is
not unique, we think that there is still a place for further
investigation in this direction.

Another consequence of the cavity approach is the con-
cept of flexibility, which serves as a measure of the ability
of a perceptron to change during the learning process. We
demonstrate this concept by calculating the (replica sym-
metric) capacity of a multilayer network (nonoverlapping
receptive fields XOR machine) using the principal of min-
imal flexibility expense of the simple perceptrons which
construct the network.

We would like to stress that the concept of flexibility
is a result of the assumption of a unique ground state,
and that replica-symmetry-breaking effects alter the ca-
pacity of the multilayered network discussed above [13].
The inclusion of these effects in the framework of a cav-
ity approach is a subject of future research. However, it
would be also interesting to see whether our simplified
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mean-field theory can be of use in constructing learn-
ing algorithms also for network architectures which are
known to have many ground states.
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APPENDIX: THE MEAN-FIELD EQUATIONS
OF THE FULLY CONNECTED MLP

We start again with the expression for the zero-
temperature free energy G [Eq. (62)]. It is more con-
venient to change variables in the following way: Define
a new symmetric matrix B of size k which is the square
root of S. S is a correlation matrix, and therefore pos-
itive definite and has a square root. In fact, there are
many roots to S but a unique symmetric root. Note that
since B is symmetric, the number of order parameters is
conserved. In terms of the matrices B and M the free
energy is

k
G=a, /Dt1 o DteVi(ht, o B) + 3 My(h* — Bt)i(h* - Bt),

4,j=1

k k
tao /Dt1 o DUVi (AT h) + 3 Mij(h™ — Bt)(h~ — Bt); | — 3 Mi;B2,.

4,j=1

Dt; are normalized Gaussian weights and the variables
7; have been replaced by (Bt); which have the same cor-
relations

/Dtl - Dty (Bt)i(Bt); = BY; = Sij.

The number of independent order parameters is k(k +
1). Differentiating with respect to M;; we get for each ij
an equation

a+/Dt1 ---dtp(hT — Bt);(h* — Bt);

“+o_ /Dtl cee Dtk(h_ - Bt)z(h_ - Bt)J = B,sz

= 8.
(A2)

These are equivalent to the first replica equation for
model B. The second group of equations may be writ-
ten

oy /Dt1 <o~ dtg ti(ht — Bt);

+a_ / Dty --- Dty tl(h+ - Bt)j = —By;, (A3)

which is equivalent to the second replica equation for
model B.

‘We turn now to the derivation of the mean-field equa-
tions by the cavity approach. In terms of the vari-
ables M and B the ground-state energy of a system of
P = P, + P_ patterns is given by [see Eq. (77)]

(A1)
i,j=1
[
E=P, /Dtl oo DtV (hF, .y BY)
+P_/Dtl-.-Dth_(h;,...,h;), (A4)

where At (M, Bt) [h~ (M, Bt)] minimize F, [F_] for a
given vector of initial fields Bt

F:}:(Ma Bt, }_7') = V:t(hla ) hlc)
k
+ 3" Mi;(h— Bt)(h— Bt);.  (A5)

4,j=1

Each of the elements of M and B is a function of both
P; and P_, or, more precisely, of oy and a_. We be-
gin with the derivation of the second cavity equation.
Since the set of subnetworks Jf, ..., J; should minimize
the energy, we require that under rescaling of each of
the subnetworks {J — sJ}} the energy is stationarry.
Therefore we derive k equations that are equivalent to
the second cavity equation for model B.

P+/Dt1-~-Dtk hF Vi(hT, .. h})

+P_ /Dt1 -+ Dt hy VE(T,...,h}) =0,

7 Bh;
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Using F we write this equation in the form

P, / Dty --- Dty hf > M;(hT — Bt);
J

+P_ /Dtl --- Dty hz_ E Mij(h_ - Bt)j = 0. (A7)
J

We regard the elements of the matrix M as independent
variables, and we require the coefficient of each of these
elements to vanish. Therefore, for every (ij) we have

P+/Dt1---Dtkh;*(h+ — Bt);

+P / Dty --- Dtyhy (h™ — Bt); = 0. (A8)

The first group of cavity equations is more complicated to
derive. We add a (+) pattern to a system of P = P, +P_
patterns. It is straightforward to show that in analogy
with previous calculations, the self-consistency equation
is

d
P+E/Dt1~--Dth+(hf,...,h:)

d
+P_3P—+ /Dt1 - Dt V_(h{, ..., hY)

/ Dty --- Dty (h+ — Bt):My;(h* — Bt),.
1

i,j=

(A9)
|

dP  d
d dB d
dP  dPdB

/Dt1 Dtk (h+ Bt);M;;(h*t — Bt); + —/Dt1 - Dty Z (b~ = Bt);M;;(h~ — Bt);,
1

4j=

where

dB d _
aPaB = 2
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Adding a (~) pattern instead of a (+) pattern we get

d
P+HJ—/Dt1--«Dth+(hi",...,h;:)
d
+P_E,—/Dt1-.-Dtkv_(h;“,...,h,j)

/ Dty --- Dty Z(h‘ — Bt);M;;(h~ — Bt);.

ij=1
(A10)

The first cavity equation is obtained if we change the
number of patterns but conserve the ratio P,/P_. We
define

d
dP

T adP,  adP_’

This is a derivative in a direction of constant ratio. Mul-
tiplying Eq. (A9) by a,/a and Eq. (A10) by a_/a we
have

d d
P+d_.P./Dt1“'Dth++P_d_P/Dtl..'Dth_

/Dtl - Dty Z (h* — Bt);My;(h* — Bt);

,Jl

+— / Dty --- Dty Z (k™ — Bt);M;;(h~ — Bt);.
i,j=1
(A11)

We use again Fy to write the equation in the form

d dB d
> M (—P+ [ —"E] /Dt1 -+ Dty(h* — Bt);(h* — Bt);

d _ __] / Dty - Dty(h~ — Bt)i(h~ — Bt),)

(A12)
4,j=1

dBy; d
dP dBy;’

We require that the equality will hold for every M,;. Therefore for every (ij) we have

_p. |4 _dB d
*|dP  dPdB

Dty --- Dtx(ht — Bt);(h*t — Bt); — P_
|/ i

d dB d

7~ 1P d—B] /Dt1 .-+ Dtg(h™ — Bt)i(h~ — Bt);

= %* /Dt1 ... Dty(h* — Bt);(h* — Bt); + %‘ /Dt1 .- Dty(h~ — Bt);(h~ — Bt);. (A13)
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Since the second equation [Eq. (A8)] holds for every P, we have

4
P

From this equation and, again, Eq. (A8) we derive the equation

P+%/Dt1...Dtkh;"(h+ _Bt)j+P_%/Dt1“'Dtkhi—(h_ = Bt); =0.

Using Eq. (A15) in the LHS of Egs. (A13) and (A8) in the RHS we find

d
P / Dty Dty(~Bt)i(h* — Bt); + P, 92 =2 / Dty --- Dty(h* — Bt)i(h* — Bt),

P2 / Dty --- Dty(~Bt)i(h= — Bt), + P32

Let us define

Aij = 9—ai /Dtl s Dtkti(h+ - Bt)j + %/Dtl cee Dtkti(h_ - Bt)]

Then Eq. (A16) is written in a matrix form:

where the prime denotes a derivative with respect to a.
Using Eq. (A8) we can show that

%/Dtl---Dtk(—Bt)i(h+ Bt); + —/Dt1 - Dty(~Bt)i(h~ — Bt);

P+/Dt1 --- Dtghf (Rt — Bt); + P_ /Dt1 --- Dtgh; (™ — Bt)j] =0 (A14)
(A15)
dB d - -

N /Dtlthk(h — Bt)i(h- — Bt),
= % / Dty--- Dtk(—Bt)i(h+ - Bt)j + % / Dty --- Dtk(—Bt)i(h_ - Bt)j. (A16)
(A17)
aBA' — aAB’' = —BA, (A18)
= % / Dt, --- Dty (h* — Bt);(~Bt); +—— / Dty --- Dty(h~ — Bt);(—Bt);. (A19)

This means that A and B commute,

AB = BA. (A20)
Since A and B commute for every a, we assume
Aij(a) = Bij(a) f(@), (A21)

Plugging this ansatz into Eq. (A18) we find that f obeys
~af' = f

and the solution is f(a) = C/a with some constant C.
So the first cavity equation for every (ij) is

a+/Dt1 - Dtgt;(hT — Bt);

+a_ / Dt --- Dtgt;(h~ — Bt)j = CBij. (A22)

Combining the first and second cavity equations we
find Eq. (A2) up to a constant C,

a+/Dt1 -+ dtg(hT — Bt);(hT — Bt);

+a_ /Dtl .- Dty(h™ — Bt);(h~ — Bt); = CSi;.

(A23)
A straightforward generalization of the heuristic argu-

ment in model A, which neglects the overlaps among the
patterns and regards Eq. (A23) as the condition

1 > *
I =S,

explains “why” C = 1.
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